Student Projects

If you are interest in a project in the laboratory, feel free to contact any member even if no project is posted in SiROP

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Data-driven/Machine Learning polymer formulation for drug development

This project aims to leverage machine learning to accelerate the design of polymer-based drug delivery systems with tailored release kinetics. Using a curated dataset of polymer formulations and their drug release profiles, predictive models will be developed, validated, and applied to optimize future formulations. By combining computational tools with explainable AI techniques, the project seeks to uncover key design principles and reduce experimental workloads. The outcome will enable smarter, data-driven reformulation processes, advancing personalized medicine and next-generation drug delivery technologies.

Keywords

Data-driven, machine learning, polymer formulation, drug

Labels

Semester Project , Internship

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-04-04 , Earliest start: 2025-04-07 , Latest end: 2025-11-30

Organization Macromolecular Engineering Laboratory

Hosts Guzzi Elia

Topics Medical and Health Sciences , Engineering and Technology , Chemistry

How Mechanical Forces Shape Cell Fate – and the Future of Regenerative Medicine

Project Summary We’re developing a powerful new in vitro model to untangle the complex mechanical cues—osmotic pressure and substrate stiffness—that skin cells experience every day. These signals are deeply intertwined in the body, but we’re building a system to decouple and precisely control them, for the first time. Why? Because understanding how cells respond to these forces is crucial for engineering functional tissues, guiding organ regeneration, and tackling mechanobiology-driven diseases like fibrosis.

Keywords

Key words: mechanical stresses, cell behavior, fibroblasts, immunostaining.

Labels

Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-03-26 , Earliest start: 2025-06-01 , Latest end: 2026-01-31

Organization Macromolecular Engineering Laboratory

Hosts Cuni Filippo

Topics Engineering and Technology , Biology

PDMS-Based Bioreactor Investigating Cell Behavior in Response to Hydrostatic Pressure and Substrate Stiffness

Introduction and Background Skin cells dynamically respond to mechanical and biochemical stimuli, which influence critical processes such as proliferation, differentiation, and migration. By understanding this interplay, mechanical and biochemical stimuli may be used in the future to facilitate the growth of skin patches, tissue formation, and organ regeneration, enabling new therapies and benefiting patients. The study of these responses, mechanobiology, requires advanced in-vitro systems to emulate physiological conditions. This project utilizes a device designed for controlled manipulation of hydrostatic pressure (0.1–1.5 kPa) and substrate stiffness (0.1–100 kPa). The system facilitates isolated and scalable experiments to analyze how the interplay of these mechanical parameters affects cell behavior. In this thesis, the student will use this system to investigate how different stimuli affect cell behavior.

Keywords

Bioreactor, tissue engineering, organ regeneration

Labels

Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-03-26 , Earliest start: 2025-05-01 , Latest end: 2025-11-30

Organization Macromolecular Engineering Laboratory

Hosts Binz Jonas

Topics Engineering and Technology , Biology

Synthesis of a novel monomer for polymeric materials with on-demand degradation and enhanced durability

Plastic waste and the resulting environmental pollution are major challenges of our time. One of the problems is the mismatch of degradability and durability in plastics. Single use plastics like packaging material should be easy to degrade to facilitate recycling after use. However, these single use plastics are often very stable and hard to recycle. Performance plastics need to last during their lifetime without significant decrease in material properties, but aging in these materials eventually leads to material failure and replacement. Both situations generate plastic waste. Therefore, we want to synthesize a material that can degrade on-demand and experiences enhanced durability on longer timescales to satisfy the needs of single use plastics and performance plastics, respectively.

Keywords

Organic and polymer chemistry, novel monomer, degradability and durability

Labels

Semester Project , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-03-04 , Earliest start: 2025-04-01

Organization Macromolecular Engineering Laboratory

Hosts Söll Carolina

Topics Chemistry

Granular Hydrogels for Chronic Wound Healing: Enhancing Stability, Transport, and Clinical Readiness

The development of biomaterials for chronic wound healing faces significant challenges in achieving shelf-stability, transportability, and compliance with clinical manufacturing standards. To address these hurdles, we aim to integrate a freeze-drying (lyophilization) step into the preparation of our granular hydrogels, facilitating storage and transport without compromising functionality. By validating the post-rehydration performance of lyophilized microgels, we aim to ensure the robustness of our product for clinical use.

Labels

Semester Project , Bachelor Thesis , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-02-18 , Earliest start: 2025-04-01 , Latest end: 2025-12-31

Organization Macromolecular Engineering Laboratory

Hosts Emiroglu Börte

Topics Medical and Health Sciences , Chemistry , Biology

Ex vivo evaluation of wound healing using granular biomaterials

Chronic wound care is hindered by the complex and variable proteomic profiles of wound exudates, which limit the efficacy of existing therapies. We aim to validate the effectiveness of our granular hydrogel platform in restoring balance to the wound microenvironment. Utilizing exudates obtained from diabetic foot ulcer (DFU) patients, we will optimize our microgel library to target clinically relevant cytokine profiles.

Labels

Semester Project , Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-02-18 , Earliest start: 2025-03-01 , Latest end: 2025-12-31

Organization Macromolecular Engineering Laboratory

Hosts Emiroglu Börte , Singh Apoorv

Topics Medical and Health Sciences , Engineering and Technology , Chemistry , Biology

Designing photosynthetic living materials with synthetic biology

Living materials, as an emerging field that combines biology and material science, are materials composed of immobilized living organisms and a carrier matrix providing pre-determined bio-functionality. [1,2] Living materials bring about new properties that are not easily realised by conventional materials. Here, we aim to design a new type of living materials that can sequester and store atmospheric CO2 irreversibly in the form of calcium carbonate minerals.

Keywords

living materials, synthetic biology, microorganisms

Labels

Bachelor Thesis , Master Thesis , ETH Zurich (ETHZ)

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-01-27 , Earliest start: 2025-02-05 , Latest end: 2025-10-31

Organization Macromolecular Engineering Laboratory

Hosts Cui Yifan

Topics Engineering and Technology

Photoresponsive slide-ring hydrogels for on-demand modulation of mechanical properties

Hydrogel materials are crosslinked polymer networks with reversible swelling, tunable porosity, elasticity, toughness, and flexibility. Conventional hydrogels often suffer from weak mechanical properties and display brittle and unstable behaviour limiting their scope for load-bearing applications. Such networks consist of side-chain functionalized polymers, whose covalent crosslinks occur at fixed positions on the polymer backbone (Figure 1A). Upon deformation, tensile stress is concentrated on the closest neighboring crosslinks, eventually leading to their rupture and material failure. Hence, the molecular design of high-performance hydrogels with toughness and elasticity similar to rubber is an emerging area of research in the engineering of polymeric materials with applications towards robust medical materials or soft robotics.

Keywords

Slide-Ring Gels, Supramolecular Chemistry, High-Performance Hydrogels

Labels

Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2025-01-16 , Earliest start: 2024-07-18

Organization Macromolecular Engineering Laboratory

Hosts Mommer Stefan

Topics Engineering and Technology , Chemistry

In vitro liver tissue models for studying liver regeneration and drug delivery systems

Many organ grafts are not suitable for transplantation due to excessive ischemic injury. In an effort to save these discarded grafts, ex vivo perfusion systems have been developed to extend the time window for organ repair. The liver, in particular, has a remarkable regenerative capacity and its ex vivo perfusion provides a unique opportunity to trigger regeneration pathways. Thus far, advanced perfusion technologies have enabled the preservation of the human liver outside of the body for up to two weeks using normothermic machine perfusion. Until now, this liver perfusion machine has only been employed to treat bacterial infections, determine tumour malignancy and assess liver function, yet how to stimulate growth and repair of liver grafts ex vivo remains unexplored. In order to effectively develop regeneration strategies, in vitro liver models are necessary since ex vivo human liver experiments are low-throughput, confounded by patient to patient variability and costly. Liver tissue slices, which are directly obtained from native liver tissue, preserve the intact hepatocellular architecture and microenvironment of the liver unlike 2D cell culture and organoid models. Thus, we aim to use liver tissue slices as a screening platform to identify pro-regenerative biomolecules and drugs. In addition, we will explore mRNA lipid nanoparticles to improve the delivery and therapeutic effect of candidate biomolecules and drugs for ex vivo liver perfusion.

Keywords

in vitro liver models, regeneration, drug screening, cell culture, molecular biology, biomedical engineering

Labels

Internship , Master Thesis

PLEASE LOG IN TO SEE DESCRIPTION

More information

Open this project... 

Published since: 2024-12-10 , Earliest start: 2025-01-12 , Latest end: 2026-05-31

Organization Macromolecular Engineering Laboratory

Hosts Cunningham Leslie

Topics Engineering and Technology , Biology

Establishing a novel high throughput Drug Screening in vitro

The development of advanced drug formulations is a cornerstone of pharmaceutical innovation, directly influencing therapeutic efficacy, patient outcomes, and market success. Achieving optimal drug absorption and bioavailability remains one of the most significant challenges in formulation design, particularly for oral and parenteral delivery systems. Addressing this challenge is critical for advancing scientific understanding and also for accelerating drug discovery and reducing time-to-market for new therapies. This Master’s thesis project aims to develop an advanced cell culture assay to model drug absorption, providing a scientifically robust and commercially valuable platform for drug screening and optimizing novel drug formulations. By bridging gaps in current drug screening methodologies, this project will contribute to innovation in drug delivery technologies and enhance competitive positioning in the growing global market for pharmaceutical solutions.

Keywords

cell culture, drug screening, drug formulation, polymer,

Labels

Master Thesis

Description

Goal

Contact Details

More information

Open this project... 

Published since: 2024-12-06 , Earliest start: 2024-12-09 , Latest end: 2025-12-31

Applications limited to EPFL - Ecole Polytechnique Fédérale de Lausanne , ETH Zurich , Hochschulmedizin Zürich , IBM Research Zurich Lab , Institute for Research in Biomedicine , Zurich University of Applied Sciences , Wyss Translational Center Zurich , University of Zurich , University of Berne , University of Geneva , University of Basel , University of Fribourg , Swiss National Science Foundation , Empa , CSEM - Centre Suisse d'Electronique et Microtechnique , Department of Quantitative Biomedicine , Balgrist Campus , [nothing]

Organization Macromolecular Engineering Laboratory

Hosts Guzzi Elia

Topics Medical and Health Sciences , Engineering and Technology , Chemistry , Biology

JavaScript has been disabled in your browser